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NUMERICAL STUDY OF SWIRLING ONE- AND TWO-PHASE 

TURBULENT FLOWS IN A CYLINDRICAL CHANNEL 

V. V. Novomlinskii and M. P. Strongin UDC 532.517~4 

Turbulent swirling flows are widely used to intensify heat and mass transfer processes 
in different types of processing units. Examples of the latter are plasma-chemical reactors 
plasmatrons, combustion chambers, scrubbers, etc. To make these units more efficient, it is 
necessary to make a detailed study of the hydrodynamics in swirling flows. 

It is known that swirling flows are characterized by highly curved streamlines and the 
development of recirculation zones. The location and dimensions of these zones depend to a 
considerable extent on the intensity of swirling and the configuration of the boundaries of 
the flow. The dimensions of the recirculation zones also depend on the "charging" of the 
flow with particles in the case of dispersed-gas flows. The study of vortical flows with a 
disperse phase is complicated by the need to allow for dynamic interaction of the phases. 
This, together with the problem of modeling the turbulence, makes it more difficult to numer- 
ically study such flows. The theoretical and experimental investigation of swirling flows 
was given great impetus in [1-3]. 

I. Swirling Turbulent One-Phase Flows. The large amount of interest in intensive swirl- 
ing flows - the main type of turbulent flow - requires the use of fairly flexible turbulence 
models. The study [4] presented the results of calculations of axisymmetric swirling tur- 
bulent jets using the Prandtl mixing length model. The results agreed well with experimental 
findings. In [5, 6] an attempt was made to use the standard k-c model of turbulence to 
numerically study swirling flows (k is the kinetic energy of the pulsating motion and E is 
the rate of dissipation of pulsative energy). This model has proven to be useful in calcula- 
tions of simple shear flows. However, use of the standard k-c model in the case of fairly 
intensive swirling has led to a significant deviation from the experimental results. The 
authors of [6] explain this discrepancy by citing the anisotropy of eddy viscosity, although 
the standard turbulence model they used does not even take into account the expressions for 
the fluctuation moments which appear due to swirling and make a description possible within 
the framework of an isotropic model. It was noted in [7] that one way of further improving 
turbulence models for swirling flows is modifying the k-~ model in different ways. 

In [8-12], corrections were proposed for the traditional two-parameter model~ As noted 
in [12], all of the modifications proposed earlier for the k-~ model proved unsuitable for 
calculating bounded swirling flows. The approach taken by the authors of [12] consisted of 
selecting optimum values of the empirical constants of the energy-dissipation model to study 
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bounded swirling turbulent flows. Thus, by direct selection and comparison with the experi- 
ment in [13], the authors obtained the following optimum values for the constants: c~=0.125, 
ci = 1.44, c2 = 1.8943, % = 1.1949 However, as was noted in [12], these optimum values are 
unacceptable for calculations of nonswirling flows. It is proposed in [12] that nonswirling 
flows be calculated using a single set of empirical constants, while another set is to be 
used to calculate slightly or intensively swirled flows. However, it is obvious that the 
characteristics of unswirled and slightly swirled flows should be similar and should differ 
appreciably from the parameters of an intensively swirled flow. 

Another approach to modeling turbulence for swirling flows consists of using a second- 
order model which includes equations for the transport of second one-point moments <u~u}>. 
This made it possible to eliminate the hypothesis that eddy viscosity is isotropic [14, 16]. 
Unfortunately, these models have a serious deficiency: the presence of a large number of 
empirical constants. The latter seriously diminishes the practical utility of the model. 
Also, the additional equations for <u~u~>. make the model more cumbersome, which makes its 
numerical realization more difficult. The validity of the hypotheses used in deriving these 
models [17] remains an open question. Attempts to use the second-order model to calculate 
swirling flows have proven to be "very disappointing" [17]. 

Here, we propose a new modification of the k-~ model for swirling flows of constant 
density. The new model considers the effect of swirling on the turbulence characteristics of 
the flow, and it changes into the standard model when swirling decays. Almost all of the 
previous modifications of the k-e model involved a change in the expressions for the empirical 
constant c 2 and/or c~. Here, we attempt to modify the term in the e-equation connected with 
generation so as to empirically account for additional correlations which occur in swirling 
flow. The better mixing of swirling flows is due to their higher degree of turbulence com- 
pared to nonswirling flows, i.e. to their larger transfer coefficients. In using a closed k- 

model, where ~t = c~pk2/~ is eddy viscosity, we can attempt to obtain an increase in ~t in 
the swirling flow by modifying the equation for ~ through a change in the term with generation 
in the ~-equation - since this term has introduced into the equation with a high degree of 
arbitrariness. Any modification should of course deal with the generation of turbulence due 
to swirling, since it is necessary for sufficiently flexible turbulence models that they 
revert to the standard k-E model as the intensity of swirling decays at the limit and ap- 
proaches zero. In certain cases, swirling of a turbulent flow leads to suppression of tur- 
bulence and, thus, to a reduction in the eddy viscosity coefficient. For example, the author 
of [18] presented a criterion of the decay of turbulent pulsations under the influence of a 
radial force in a swirling flow a(w~/r)/0r>0. 

In fact, in the description of a turbulent swirling flow on the basis of the k-c model, 
a new moment <FSu'> appears. Here F$ is the fluctuational component of the radial (centrifu- 
gal) force. In accordance with the gradient hypothesis, this moment can be represented in 
the form (incompressible case) <F~v'> =--l~ta(w21r)lOr. Writing the generation term G as the sum 
of G w and Gu, v (G w is the generation due to the tangential component of velocity w and Gu, v 

is the generation due to the components u, v), we obtain Gw = ~t r~ + Or J" 

An increase (decrease) in ~t is obtained by decreasing (increasing) the term with generation 
in the equation for e .  Using a simple analog for the Richardson number R i = G w  s s 

we can assign c I in the form c I = 1.44 - caRl. Here, the superscript s denotes the shear 
rt 

part of generation without the term <FrU >. The best agreement with the experimental data 
[13] is obtained when c 3 = I, i.e. 
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Assuming that there is axial symmetry, the steady turbulent swirling flow of an incom- 
pressible fluid in a cylindrical channel is described on the basis of the Reynolds equations 
closed by means of a modified turbulence model. The k-E model is used with the modification 
proposed in [19] for boundary-layer flows. In a cylindrical coordinate system with the z 
axis along the channel axis and the radial coordinate r, the equations have the form 

Opur Opvr 
Oz + ~;- r  = 0 '  ( 1 . 2 )  

p u - ~  + pV-~r = --- 

op o ( o~ ) I o ( o~ ) I o ( o.) 
oz + 2 -~- ~t. -~- + r -5"7 r~t~ -o-7 + "7 ~ rF~ "o-7"r ' 

0, 0( o) 
plt ~ -~" pI) Or r Or + "~z ~ts - ~  + r -gT? rp~s --~r + 

O (  Ou) v 
+ -g'f F~-~r - -  2~t.--r2, 

OU " ~  "t" pV,"~ -t- r r Or - ~  - -  - 7  Or 

Pu-~z + Pv--~r = r  o--7" r - ~ - g ;  ] -4--~ \-5-~-g7- ] + G - - p c ,  

pu-~z + o r  o~ r Or r ~ + ~ ~ + q h  T G - - c 2 / 2 P T ,  

ci = t . 4 4 - - R i ,  p~ = ~t A-,uz, G = G ~ , ~ , ~ - G . , ,  

I l l  - -  Gj(Gu, .  + G~,), Pt = c~f~P k2/s, 

/~ = (1 - -  exp ( .  A~Rh)) 2 (1 + At,'RO, 

1~= t + ( A / i ~ ) a  , I 2 =  t - - e x p ( - - R p ) ,  

Rt = k~'p/~e, R~ = k */~ (JR --  r) p/~tl, 

r = R :  gt=-~7,. = 0  , a m = -  d- ~ . \o,--}~ 
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Here, u, v, and w are the z, r, and ~ components of the averaged velocity, respectively; 
l , , /au~au~k,> 

k=7<u,u, > is the kinetic turbulent energy; e=v,~// is the specific rate of dissipa- 

tion of fluctuation energy; p and p are the averaged density and pressure of the gas; ~s, ~l, 
Pt �9 are the effective, laminar, and eddy viscosities. The empirical constants of the k-e 
model take the standard values [19]: c~ = 0.09, c 2 = I:92,0h = 1.0, ~s = 1.3, A~ --0.0165, A t 
= 20.5, A~ = 0 2 5 .  The following boundary conditions were adopted for problems concerning a 
turbulent swirling flow in a cylindrical tube: "mild" boundary conditions, with axial grad- 
ients equal to zero, are assigned at the tube outlet for all parameters; the profiles obtained 
experimentally in [13], with v - 0, are assigned at the inlet for u, w. The condition a~/ar 
= 0 is satisfied on the tube axis for �9 = u, w, k, ~, and v = 0. Assigning a "stepped" 
rather than a uniform profile for k and E on the inlet boundary made it possible to have the 
calculated results approximate the experimental data. 

Any differential equation of system (1.2) can be represented in the form 

az + r o---7--=7- a-7 + ~z +S~, (1.3) 

where ~ = u, v, w, k, e; F# are transport coefficients; S~ are source terms. Integrating 
(1.3) over the control volume of the difference grid (Fig. I), we obtain its discrete analog 

[20]  ap~p = ae~e @ a ~ o ,  + anon  + a a ~ s + - b ,  

a~ = DeA(P%) § max(--F~,  0), De --  Fepr~Ar/Sz, 

a .  = D,,A(Pe~) -4- max (--F,~, 0), D .  = rnpr,~vAz/6r, 

ao, = D ~ A ( P % )  + max (Fo,, 0), Do, = F,opro,Ar/Sz, 

aa = DaA(P%) + max (F~, 0), D~ = Fapr,pAz/6r, 

F~ = (pu)epr~Ar, F~ = (ov)~vr~pAz, 

F~ = (pu)o,vro,Ar, F~ = (pV)apAzrav, 

rap = (r~ q- rp)/2, b --- ScAzrAr,  

ap = ae q- ao, -[- a,~ --[- a~ - -  S~,rpArhz. 

The quantities Pep, Fnp, F~p, Pap, (pu)sp, (pU)e p, (gu)o,p, (pu)np are also determined, while Sz and 
Sp are found by linearizing the source term S$ ~ S c + Sp~. The grid Peclet numbers P%, Peo,, 
Pe~, Pe a are represented as the ratio of the corresponding convective and diffusive terms: 
Pc= = F~/D=, ~ = e, ~, n,s. The expression for the difference coefficients fie, ao,, an, as contain 
the unknown function A(Pea) , which also determines the type of difference scheme. The author 
of [20] recommended a power scheme to model two- and three-dimensional problems. For this 
scheme, A(Pe~) = max [0, (i --0AlPe~l)5]. 

In deriving the discrete analog for the equations of the velocity components u and v, it 
is convenient to shift the control volume to the right and upward from the point p, respec- 
tively (i.e. to use a so-called "staggered grid"). The values of u and v are found at the 
points ep and np. One consequence of the use of such a grid is that the pressure difference 
between two adjacent nodes determines the velocity component at the point between the nodes. 
Such a location of control volumes has other advantages as well [20]. The pressure field can 
be calculated by means of the SIMPLE-procedure [20]. The difference equations for all of the 
variables were solved by an iterative method using trial runs in the r direction. 

To validate the model obtained here, we performed a series of calculations for a tur- 
bulent swirling flow of air in cylindrical channel. Figures 2 and 3 show the radial profiles 
of the dimensionless velocity components u and w. Comparison of the experimental data In 
[13], the calculated data in [12], and the results of modeling by the method described above 
(curves 1-3, respectively) showed that the model with a correction for c I predicts the flow 
characteristics most accurately. It should be noted that in calculations with the standard 
k-~ model, a profile of w with a maximum near the wall is quickly established. This is 
characteristic of the rotation of a solid and is not in agreement with the experiment. 

2. Turbulent Swirling Dispersed=Gas Flows. A limited number of studies have calculated 
swirling flows with a disperse phase. The study [21] employed analytical methods to inves- 
tigate limiting cases of the laminar flow of a swirling dust-laden gas. The investigation 
[22] examine the motion of solid particles in a specified velocity field. The components of 
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the velocity vector of the gas phase were modeled by means of an arbitrary time function dis- 
tributed according to a normal law with a mathematical expectation equal to the mean values 
of the velocities and a variance equal to the turbulence intensity. The studies [23, 24] 
presented calculations of swirling flows with a disperse phase on the basis of the equations 
of gas dynamics. 

Here, we examine a turbulent swirling flow with a disperse phase when the Navier-Stokes 
equations are used for the carrier phase with a modified closed k-e model. The hypothesis of 
interpenetrating, interacting continua was adopted to model two-phase flows. The disperse 
phase consists of spherical solid particles of the same size. The volume concentration of 
these particles is small, while their mass percentage may be substantial. Since the particle 
concentration is small, we did not consider the interaction of the particles in the flow. 
The effect of the particles on both the averaged and the fluctuation parameters of the flow 
was considered [25]. The study [26] showed that fluctuations of the parameters of the par- 
ticles can be ignored for a certain class of flows, which simplifies the model considerably. 
In many flows containing heavy particles encountered in practice, r0/r D < I, where ~D is the 
dynamic relaxation time of a particle in the flow, 70 = L/u 0 is the characteristic time of 
large-scale fluctuations of the dimension L, r 0 - i0-3-i0 -4 sec, and r D - 10 -2 sec. This 
allows us to ignore fluctuations in the parameters of the disperse phase for inert particles 
when examining phase interaction and modeling the motion of a two-phase medium. In swirling 
flows, the effect of turbulent transverse diffusion of particles is usually negligible com- 
pared to radial dispersion of particles due to manifestation of their velocity component wp. 

We used Eqs. (1.2) to describe the motion of the carrier phase, adding source terms 
reflecting the interaction of the gas and disperse phases (only drag is considered) to the 
right sides of the equations for u, v, w, k, and ~. The Friedman-Keller procedure is normally 
used to derive these terms in the equations for k and e. The derivation is based on the 
assumption of continuity of the disperse phase for all characteristic dimensions of the 
problem, including the correlative dimension of 2 for ~, i.e. on the microscale of the tur- 
bulent pulsations. However, as shown in [25], it is not possible to formally apply the 
Friedman-Keller procedure to obtain the term Sop - which considers the interaction of the 
phases in the equation for e - because the disperse phase can no longer be regarded as a 
continuum in this case. The possibility of ignoring the term S~p in the equation for dissipa- 
tion was substantiated for the case of satisfaction of the condition 2/r 0 << I (r 0 is the 
mean distance between particles). The source terms for the other equations have the form 

S~p = O(up - -  u ) / ~ ,  S~p = O(v~ - -  v ) / ~ ,  S~p  = O(wp - -  w)/~D, 

�9 2 t + 0.15 Re~/3 
Shp = -- 2kO/~,  TD = ppap/i8~zfo, ]1) = i + 3.82A ' A = ~tz/pcdp, 

, ( a In ~D \ -1  
T D = ~ D . t - - R e p  0 - - ' ~ )  " 

Here, 7, up, vp, wp are the volume concentration and the components of the velocity of the 
disperse phase; ~D, dynamic relaxation time of a particle, with a correction for the non- 
Stokes regime of flow about the particle fD; Rep, Reynolds number for the particle; c, sonic 
velocity; ~, particle diameter; pp, density of the particle material; 0 = PpT, mass con- 
centration of the disperse phase. Equations of the Eulerian type [25] are written for the 
disperse phase: 

a--T + a--7- = O, up-~r § Up az r "c D 

awp aWp Up~p ~D au~ aup ~ (u -- Up). vp-$i-  + up ~ + - 7 -  = ( i v -  w~), %-5-i-r + up a---f = ~--~ 
(2.1) 

The diffusion of particles can be ignored for the disperse-phase parameters being inves- 
tigated. System (2.1) was solved in a unique algorithm with equations for the carrier phase. 
Figures 4 and 5 show the transverse profiles of u, up, w, wp in the case of a dispersed-gas 
flow in a cylindrical channel when particles with ~ = 2.10 -5 m and pp = 8.9"103 kg/m 3 are 
chosen as the disperse phase and the ratio of the mass flows of particles and air at the 
channel inlet ~ = I. The initial profiles for the carrier phase were determined as follows: 
uo(r ) =100 m/see, vo(r)=O , wo(r ) =300 r/R (m/see), R =i0 cm is the channel radius. The following 
conditions were prescribed at the inlet for the disperse phase: Upo(r ) ~ 10 m/see, Wpo(r) ~ vp~(r) 
0. The profile for ? was uniform. As shown in Fig. 4, introduction of the particles de- 
creases the nonuniformity of the profile for u, while the longitudinal dimension of the 
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profile in flows with a recirculation zone. The greatest difference for the velocities u and 
u~ is seen near the channel wall (curve 1 - profile of u in the case of a nondust-laden flow; 
2 - profile of u in a dispersed-gas flow; 3 - profile of up; the notation for w and wp in 
Fig. 5 is similar). 

The presence of initially unswirling inert particles leads to the suppression of swirling 
(Fig. 5), although the profiles of w and wp are qualitatively the same as for the case of 
rotation in accordance with the law of a solid. Thus, calculations performed using the 
proposed model showed that the disperse phase has a strong effect on the characteristics of 
the flow, which can be described within the framework of a simple modification of the k-~ 
turbulencemodel. 
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